Month: May 2016

Picking Brains – Part 1

Posted on Updated on


In a two-part final installment in the series dedicated to brain-related research, neuroscientist and coordinator of the Malta Neuroscience Network, Professor Giuseppe Di Giovanni, tells us why collaborative research and heightened public awareness are crucial to further understanding and curing brain diseases.

di giovanniThere is very little doubt that the brain is an amazing machine capable of doing incredible things in a, seemingly, effortless way… From the way the brain picks up a new language to the way it deciphers the things we see, it works in tandem with every other organ in our body to ensure we can actually exist in this reality.

But, because it’s such a vital tool for our wellbeing, it should come as no surprise that when something goes wrong with the brain, our general health suffers manifold. In fact, as Professor Di Giovanni explains, brain illnesses are among the highest causes of death and disability the world over.

“While 400,000 people die from breast cancer every year, one million people commit suicide. Add death due to the abuse of drugs, Alzheimer’s, Parkinson’s, and all the other neurodegenerative disorders, and the numbers skyrocket,” he says.

“Yet, despite the high numbers, social awareness of brain research is low, and mental illness is still perceived as an indulgence, a sign of weakness, or a punishment. For patients, it carries powerful negative attributes in all of their social relations, and that situation must be improved.”

In order to do this, Professor Di Giovanni helped found the Malta Neuroscience Network (MNN) back in 2015. Today, he is still the coordinator of the Board, and the organisation’s aims remain unchanged.

Among many of its goals, MNN hopes to get more neuroscientists and researchers to work together – along with both the media and educators – to raise awareness about the brain’s capabilities and the illnesses that can afflict it. More importantly, however, it also seeks to advance the research we have of the body’s most complex component.

“All people who work in the field of research know that science is needed to generate new knowledge,” he explains. “Science and technology have undergone continuous development over the past 400 years so, as a result, our society today is highly technical and specialised. Nevertheless, scientific knowledge and everything that has to do with scientific culture, especially in terms of brain research, doesn’t always filter down to the public.

“That’s a shame on many accounts,” he continues. “The human brain is the most complex organ in the known universe. This complexity makes it the last and hardest frontier in medical research, and unravelling the brain’s secrets could change the lives of millions of people of all ages who suffer from neurological and psychological conditions, lesions or addictions.

“Moreover, brain diseases can affect anyone. One in three Maltese people – and about one billion people worldwide – will suffer from some form of condition or disease at some point in their lives, which includes autism, multiple sclerosis, depression, and dementia. These are among the 21st century’s biggest challenges in terms of public health too, so we need to develop new ways to cure these conditions, rather than simply treat them.”

Of course, our knowledge of brain-related diseases has advanced greatly, particularly over the last century. Indubitably, this is thanks to researchers all over the world, whose contributions have made conditions like autism, schizophrenia, Parkinson’s and Alzheimer’s treatable or more manageable.

“Even so, further steps are needed to allow researchers to translate these findings into treatments,” adds Professor Di Giovanni. “Basic researchers need to work with clinicians to ensure that these new discoveries within the lab end up at the bedside… In fact, this is the only approach that will allow us to understand the brain and subsequently protect brain health to benefit patients, their families, and health workers… This is the aim of the MNN and such a collaboration is precisely what is needed right now.”

As he explains, we are nowhere near the end of the line, and while the advancements in science and technology are (as Professor Di Giovanni himself points out) ‘promising’, the public’s awareness of such illnesses and their treatments, and the stigma associated with them, still need to be worked on.

The work currently being conducted by various entities within the MNN, and through its work with RIDT, is helping research about the brain leave the laboratories and become part of the public psyche. From the Brain Awareness Week that was held last March to offering study-units in neuroscience at the University of Malta, the race is on to bring the brain to the forefront of research.

“The future of brain health will expand exponentially when cognitive neuroscientists, medical doctors, molecular biologists, neuro-engineers and other interdisciplinary team members come together to discover ways to promote brain performance in health, neurologic injury, psychiatric disturbance and brain disease.

“Fostering collaborations among scientists is the only way to contribute to Malta’s scientific development. Indeed, collaboration is the fastest way to find real solutions that can change lives for all people, today,” he concludes.

Professor Di Giovanni’s run as the coordinator of the MNN Board will come to an end at the end of 2016. Before that happens, however, he is adamant in his mission to bring together as many researchers to work towards this one common goal – understanding the brain.

You too can be part of this fascinating world of research by supporting researchers in all the faculties of the University of Malta. Please click here for more information on how to donate to research through the Research Trust (RIDT).


Taking Over the Universe

Posted on Updated on


As the University of Malta’s Electronics Systems Engineering Department works on sending the first Maltese satellite into outer space, Dr Ing. Marc Anthony Azzopardi explains the process and the benefits of such an accomplishment.

Dr Ing. Marc Anthony AzzopardiThe frontiers of science and technology are constantly being pushed forward, giving us a better understanding of the world we live in, and better ways of manipulating the elements that make it up. As time goes on, those advancements are taking place more often and at a faster rate than ever before. But where does Malta fit into the great scheme of things?

For anyone who has followed this blog from the beginning, it will come as no surprise when we say that Malta is definitely a player in the world of research and medical innovation. For a country that is a fraction of the size of most European capitals, the potential that is being unlocked is astonishing.

Yet one area that has often been overlooked – most probably because many people assumed we’d have no luck in it – is space and everything related to it, including satellites and space exploration.

But all that is set to change as the University of Malta’s Faculty of Engineering is finally working towards sending the first Maltese satellite to space by 2018!

“The idea came to me while at a conference in Seattle back in 2011,” says Dr Ing. Marc Anthony Azzopardi, a lecturer and researcher within the Electronics Systems Engineering Department of the UoM. “It was there, at the DASC Conference, that I first saw nanosatellites and picosatellites built from little more than a mobile phone motherboard.

“As you can imagine, that is by no means a straight forward thing to do as all components within a satellite need to be able to resist oxidation, intense ionizing radiation, and even severe swings in temperature. In order to ensure that the satellite we’ll be sending can withstand the abnormal (by earthly standards) conditions, we have had to test hundreds of different components under extreme conditions.”

3D Model of UoMSat1 – the University of Malta’s first Pico-Satellite

The hardware will cost just over EUr 30,000 to complete, so a technology demonstrator (aka prototype) will be sent into space to allow Dr Azzopardi and his team to test the basic systems, and hence propose improvements for more ambitious missions.

The final device, which has been nicknamed the ‘UoMBSAT1’, will also carry a payload (a module housed within the satellite but that works independently), which will be monitoring certain characteristics of the earth’s ionosphere. It’s good to note that the payload is being created by Jonathan Camilleri, a PhD student who is currently working in Birmingham under the expert guidance of Prof. Matthew Angling. This Malta‑Birmingham collaboration is pivotal to the success of the satellite, hence the ‘MB’ in the name of the satellite.

“Jonathan’s project is an Impedance Probe, which will test the properties of the top side of the atmosphere, called the ‘ionosphere’, which is an electrically-charged layer. This layer, which protects us from radiation – literally, without it there would be no life on earth – also affects radio waves, meaning it messes with readings when scientists are conducting radio astronomy [the study of celestial objects at radio frequencies], or when trying to do earth observation from satellites using synthetic aperture radar.”

Through the satellite and the Impedance Probe, Dr Azzopardi and the rest of the team will be testing software to measure the ionosphere in real-time, potentially leading towards a reality in which this could be compensated for. Should this be successful, it would allow for scientists the world over to obtain more accurate data, and take clearer pictures of the earth.

Working on this with Dr Azzopardi is Darren Cachia, the first student to apply for a Master’s degree in Astrionic Systems Engineering at the UoM. Darren’s studies are being sponsored by the Endeavour Scholarship Scheme, which are partly funded by the EU, and his job is to design the top system architecture of the satellite along with the sub-system.

“When designing, there are a lot of things you need to keep in mind,” Darren explains. “You have to set requirements for everyone, whether they’re working on the physical parts of the satellite or on the software.”

file (1)
An early mock-up demonstrating the typical size of a Pico-Satellite

Darren’s job, in a nutshell, is to work on the on-board computer system for the UoMBSAT1 and its power supply, as well as the attitude control system that will help the team control the way it’s facing – an important task to ensure it functions properly, and continually gets information about the ionosphere.

“The team is ever changing, however, and we have people coming down from Switzerland, Turkey, France and Croatia this summer to help with the various systems,” continues Dr Azzopardi. “At the moment, aside from all the students working on this project, there are 12 academics – and the total number of people working on this will go up to 30 by the summer.”

For this particular satellite, the Electronics Systems Engineering Department is also working closely with the Universita di Sapienza di Roma, which will be launching its seventh collection of satellites this December.


“Once it’s complete, the satellite will be launched from one of the existing spaceports somewhere in the world, most probably the one in Kazakhstan. The satellite, however, is too small to be sent to space by itself, so it will hitchhike a ride there on a larger satellite,” he adds.

Among the many challenges being faced by the UoM in the lead-up to the completion of this satellite, is the fact that, as it stands, it would take the satellite 170 years for it come back to earth. This is mostly due to its size, weight and the velocity it will be travelling at, yet International Space Law states that no satellite should orbit the earth for longer than 25 years.

Even so, Dr Azzopardi and his team are adamant that they want to make this dream a reality, and give Malta a chance to shine even out in the cosmos. Will they succeed? We think so!

Watch the previous Launch of UniSat-6 Nano-Satellite Cluster by GAUSS Srl. in June 2014

You too can be part of this fascinating world of research by supporting researchers in all the faculties of the University of Malta. Please click here for more information on how to donate to research through the Research Trust (RIDT).